一般化された Abel 圏と蛇の補題

圏論のあか☆ねこ

2024年12月22日

これは圏論 Advent Calendar 2024 の 22 日目の記事です.

1 一般化された Abel 圏の定義

以下, C は零対象 0 を持つ圏とする.

定義 1.1 (零射). C の任意の対象 X,Y に対して, ただ一つの射 $X \to 0$ とただ一つの射 $0 \to Y$ の合成 $X \to 0 \to Y$ を零射という. 零射を 0 で表す.

定義 1.2 (部分対象, 商対象). 圏 \mathcal{C} の対象 X を一つ取る. 対象 A_i と mono 射 f_i : $A_i \to X$ (i=1,2) に対して, ある同型射 g: $A_1 \to A_2$ で $f_1 = f_2 \circ g$ なるもの があるとき, 組 (A_1, f_1) と (A_2, f_2) は同値であるという.

対象 X に対して, 対象 A と mono 射 $f: A \to X$ の組 (A, f) の, 上記の意味での同値類を**部分対象**という. X の部分対象の全体を S(X) で表す.

双対的に**商対象**も定義できる. X の商対象の全体を Q(X) で表す.

定義 1.3 (交わり, 結び). X の二つの部分対象 $(A_1, f_1), (A_2, f_2)$ がファイバー積を持つとする. すなわち, 対象 A_{12} と射 h_i : $A_{12} \to A_i$ (i = 1, 2) で次図が引き戻しの図式になっているとする.

$$A_{12} \xrightarrow{h_2} A_2$$

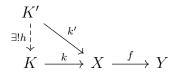
$$\downarrow_{h_1} \qquad \downarrow_{f_2}$$

$$A_1 \xrightarrow{f_1} X$$

このときこれを交わりという. 双対的に二つの商対象の結びも定義される.

定義 1.4 (核). $f: X \to Y$ の核とは, \mathcal{C} の対象 K と射 $k: K \to X$ の組 (K,k) で以下を満たすものである.

- 1. $f \circ k = 0$,
- 2. $f \circ k' = 0$ となる射 $k' \colon K' \to X$ に対して射 $h \colon K' \to K$ で $k' = k \circ h$ となるものが一意に存在する.



 $k := \ker f, K := \operatorname{Ker} f$ と表す.

補題 1.1. $\ker f$ が存在するならば, $\ker f$ は mono である.

(証明) $K := \operatorname{Ker} f$ とし、 $h_1, h_2 \colon K' \to K$ に対して $\operatorname{ker} f \circ h_1 = \operatorname{ker} f \circ h_2 = k'$ とする.このとき $f \circ k' = 0$ であるから、核の性質により $k' = \operatorname{ker} f \circ h$ となる h が一意に存在する.従って $h_1 = h = h_2$.

このことから核とは上記のような部分対象 (K,k) の同値類と考えることができる.

定義 1.5 (余核). $f: X \to Y$ の余核とは, C の対象 C と射 $c: Y \to C$ の組 (C, c) で以下を満たすものである.

- 1. $c \circ f = 0$,
- 2. $c'\circ f=0$ となる射 $c'\colon Y\to C'$ に対して射 $h\colon C\to C'$ で $c'=h\circ c$ となるものが一意に存在する.

$$X \xrightarrow{f} Y \xrightarrow{c} C$$

$$\downarrow \exists ! h$$

$$C'$$

 $c := \operatorname{coker} f, C := \operatorname{Coker} f$ と表す.

補題 1.2. coker f が存在するならば、coker f は epi である.

(証明) 補題 1.1 の双対である.

このことから余核とは上記のような商対象 (C,c) の同値類と考えることができる.

定義 1.6 (像, 余像). 射 f に対して, coker f の核 ker(coker f) が存在するとき, これを f の像という. また, ker f の余核 coker(ker f) が存在するとき, これを f の余像という. f の像を im f で, 余像を coim f で表す.

補題 1.3. $f = \text{im } f \Rightarrow f$ は mono, $f = \text{coim } f \Rightarrow f$ は epi.

(証明) 前半は $f = \operatorname{im} f = \ker(\operatorname{coker} f)$ による. 後半は $f = \operatorname{coim} f = \operatorname{coker}(\ker f)$ による.

補題 1.4. $f: X \to Y$ が mono $\Rightarrow \ker f = 0 \Leftrightarrow \operatorname{coim} f = 1_X$.

(証明) 前半は自明. 後半は $\ker f = 0$ ならば $\operatorname{coim} f = \operatorname{coker}(0 \to X) = 1_X$ であることと、逆に $\operatorname{coim} f = 1_X$ ならば $\ker f = \operatorname{coim} f \circ \ker f = \operatorname{coker}(\ker f) \circ \ker f = 0$ であることから.

補題 1.5. $f: X \to Y$ が epi \Rightarrow coker $f = 0 \Leftrightarrow \text{im } f = 1_Y$.

(証明) 補題 1.4 の双対である.

定義 1.7 (一般化された Abel 圏). 圏 \mathcal{C} が一般化された Abel 圏であるとは

- 1. C は零対象を持つ.
- 2. C の全ての射は核と余核を持つ.
- 3. 任意の $f\colon X\to Y$ に対して自然に定義される射 $\bar f\colon \operatorname{Coim} f\to\operatorname{Im} f$ が同型 である.

を満たすことを言う. ここで「自然に定義される \bar{f} 」とは以下のように作られる.

- 1. $\operatorname{coim} f \circ \ker f = \operatorname{coker}(\ker f) \circ \ker f = 0$ かつ $f \circ \ker f = 0$ により、p: $\operatorname{Coim} f \to Y$ で $f = p \circ \operatorname{coim} f$ となるものが一意に存在する.
- 2. $0 = \operatorname{coker} f \circ f = \operatorname{coker} f \circ p \circ \operatorname{coim} f$ かつ $\operatorname{coim} f$ が epi だから $\operatorname{coker} f \circ p = 0$.
- 3. $\operatorname{coker} f \circ \operatorname{im} f = \operatorname{coker} f \circ \ker(\operatorname{coker} f) = 0$ かつ $\operatorname{coker} f \circ p = 0$ により、 $\bar{f} \colon \operatorname{Coim} f \to \operatorname{Im} f$ で $p = \operatorname{im} f \circ \bar{f}$ となるものが一意に存在する.
- 4. \bar{f} は $f = \text{im } f \circ \bar{f} \circ \text{coim } f$ となるただ一つの射である.

$$\begin{array}{ccc} \operatorname{Coim} f & \xrightarrow{\exists ! \bar{f}} & \operatorname{Im} f \\ & & & \downarrow & \operatorname{im} f \\ \operatorname{Ker} f & \xrightarrow{\ker f} & X & \xrightarrow{f} & Y & \xrightarrow{\operatorname{coker} f} & \operatorname{Coker} f \end{array}$$

定理 1.1. 一般化された Abel 圏において, 任意の mono 射はある射の核であり, 任 意の epi 射はある射の余核である.

(証明) f が mono ならば上記 \bar{f} を用いて $f=\operatorname{im} f\circ \bar{f}=\ker(\operatorname{coker} f)\circ \bar{f}$ と書ける (補題 1.4). 核は同型を除いて一意だから $f\cong\ker(\operatorname{coker} f)$ である.

双対的に
$$f$$
 が epi ならば $f \cong \operatorname{coker}(\ker f)$ である.

定理 1.2. 一般化された Abel 圏において $f: X \to Y$ が mono かつ epi ならば同型射である.

(証明)
$$f \cong \ker(\operatorname{coker} f) = \ker(Y \to 0) = 1_Y$$
 による.

補題 1.6. 一般化された Abel 圏において $f=m\circ q, m=\operatorname{im} f$ と分解するとき, m は mono であるが, q は epi である.

(証明) $m \circ q = f = m \circ \bar{f} \circ \operatorname{coim} f$ かつ m は mono だから $q = \bar{f} \circ \operatorname{coim} f$. ここで \bar{f} は同型かつ $\operatorname{coim} f$ は epi だから q も epi である.

双対的に以下の補題が成り立つ.

補題 1.7. 一般化された Abel 圏において $f = p \circ e, e = \text{coim } f$ と分解するとき, e は epi であるが, p は mono である.

従って、一般化された Abel 圏において $f: X \to Y$ について以下が成り立つ.

定理 1.3. $\ker f = 0 \Rightarrow f$ は mono.

(証明) このとき $coim f = 1_X$ であるから $f = p \circ coim f = p \pmod{2}$.

以上により、一般化された Abel 圏においては

- 1. f は mono
- 2. $\ker f = 0$
- 3. $\operatorname{coim} f = 1$
- 4. $f = \operatorname{im} f$

は全て同値となる. 双対的に

- 1. f l epi
- 2. $\operatorname{coker} f = 0$
- 3. im f = 1
- 4. $f = \operatorname{coim} f$

も全て同値である.

補題 1.8. 一般化された Abel 圏の射 $f: X \to Y$ に対して $f = m \circ q, m = \operatorname{im} f$ とする. もし mono 射 $m': Y' \to Y$ で $f = m' \circ q'$ $(q': X \to Y')$ となるものがあれば, mono 射 $t: \operatorname{Im} f \to Y'$ で

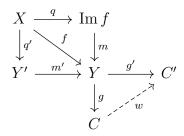
$$m=m'\circ t, q'=t\circ q$$

となるものが一意に存在する.

(証明) 証明は [1] による. $g = \operatorname{coker} f, C = \operatorname{Coker} f$ とおく. また $g' = \operatorname{coker} m'$: $Y \to C'(= \operatorname{Coker} m')$ とする. このとき $g' \circ m' = 0$ だから

$$g' \circ f = g' \circ (m' \circ q') = (g' \circ m') \circ q' = 0$$

となる. よって $w: C \to C'$ で $g' = w \circ g$ となるものが一意に存在する.



一方で $\operatorname{coker} m = \operatorname{coker}(\ker(\operatorname{coker} f)) = \operatorname{coker} f = g$ であるから $g \circ m = 0$. 故に

$$g' \circ m = (w \circ g) \circ m = w \circ (g \circ m) = 0$$

である. $g' = \operatorname{coker} m'$ により $m' = \ker g'$ であるから t: $\operatorname{Im} f \to Y'$ で $m = m' \circ t$ となるものが一意に存在する. m が mono であるから t も mono である. また

$$m' \circ q' = m \circ q = (m' \circ t) \circ q = m' \circ (t \circ q)$$

において m' が mono であるから $q' = t \circ q$ である.

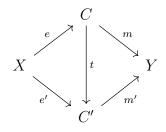
双対命題として以下が成り立つ.

補題 1.9. 一般化された Abel 圏の射 $f: X \to Y$ に対して $f = p \circ e, e = \text{coim } f$ とする. もし epi 射 $e': X \to X'$ で $f = p' \circ e'$ $(p': X' \to Y)$ となるものがあれば, epi 射 $s: X' \to \text{Coim } f$ で

$$e = s \circ e', p' = p \circ s$$

となるものが一意に存在する.

定理 1.4 (一意 epi-mono 分解). 一般化された Abel 圏の全ての射 $f\colon X\to Y$ は mono 射 $m\colon C\to Y$ と epi 射 $e\colon X\to C$ を用いて $f=m\circ e$ と表すことができる. また mono 射 $m'\colon C'\to Y$ と epi 射 $e'\colon X\to C'$ で $f=m'\circ e'$ となるものがあれば, 同等射 $t\colon C\to C'$ で $e'=t\circ e, m=m'\circ t$ となるものがただ一つ存在する.



定理 1.5. 一般化された Abel 圏において, $f,g\circ f$ が epi ならば g も epi である. (証明) g の epi-mono 分解を考える.



上図において, $e \circ f$ と i は $g \circ f$ の epi-mono 分解を与えるが, epi-mono 分解の一意性と $g \circ f$ が epi であることから, i は同等射でなければならない. 故に $g \cong e$ は epi である.

最後に、交わりと結びについて述べておく.

定理 1.6. 一般化された Abel 圏において, 対象 X の任意の二つの部分対象は常に 交わりを持つ.

(証明) 証明は [1] による. $f_i: A_i \to X$ (i = 1, 2) をいずれも mono 射とする.

$$f_1^* = \operatorname{coker} f_1 \colon X \to C$$

とし,

$$h_2 = \ker(f_1^* \circ f_2) \colon A_{12} \to A_2$$

とする. f_2, h_2 がともに mono なので, $f_2 \circ h_2$ も mono である.

$$A_{12} \xrightarrow{h_2} A_2$$

$$\downarrow^{f_2}$$

$$A_1 \xrightarrow{f_1} X \xrightarrow{f_1^*} C$$

 $0 = (f_1^* \circ f_2) \circ h_2 = f_1^* \circ (f_2 \circ h_2)$ かつ $f_1 \cong \ker(\operatorname{coker} f_1) = \ker f_1^*$ により、ある射 $h_1 \colon A_{12} \to A_1$ が存在して $f_2 \circ h_2 = f_1 \circ h_1$ となる.

$$A_{12} \xrightarrow{h_2} A_2$$

$$\downarrow^{h_1} \qquad \downarrow^{f_2}$$

$$A_1 \xrightarrow{f_1} X$$

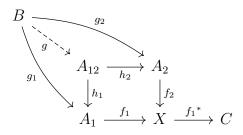
これが引き戻しの図式であることを見るために、ある対象 B と射 $g_i \colon B \to A_i$ を取り、 $f_1 \circ g_1 = f_2 \circ g_2$ であるとする.

$$h_2 = \ker(f_1^* \circ f_2) \ \succeq$$

$$(f_1^* \circ f_2) \circ g_2 = f_1^* \circ (f_2 \circ g_2) = f_1^* \circ (f_1 \circ g_1) = (f_1^* \circ f_1) \circ g_1 = 0$$

により, $g: B \to A_{12}$ で $g_2 = h_2 \circ g$ となるものが一意に定まる. このとき

 $f_1\circ g_1=f_2\circ g_2=f_2\circ (h_2\circ g)=(f_2\circ h_2)\circ g=(f_1\circ h_1)\circ g=f_1\circ (h_1\circ g)$ が成り立つ. f_1 は mono だから $g_1=h_1\circ g$ となる.



定理 1.7. 一般化された Abel 圏において, 対象 X の任意の二つの商対象は常に結びを持つ.

(証明) 定理 1.6 の双対である. □

2 完全列と蛇の補題

以下は全て一般化された Abel 圏で考える.

定義 2.1 (完全列). 射の列

$$\cdots \longrightarrow A_{n-1} \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} A_{n+1} \xrightarrow{f_{n+1}} \cdots$$

は $\operatorname{Im} f_{n-1} = \operatorname{Ker} f_n$ が成り立つとき**完全列**であるという.

補題 2.1. 1. $f: X \to Y$ が mono $\Leftrightarrow 0 \to X \xrightarrow{f} Y$ が完全.

- 2. $f: X \to Y$ が epi $\Leftrightarrow X \xrightarrow{f} Y \to 0$ が完全.
- 3. $f \colon X \to Y$ が同型 $\Leftrightarrow 0 \to X \stackrel{f}{\to} Y \to 0$ が完全.

証明は自明である.

補題 2.2. 完全列の可換図式

から導かれる列 $\operatorname{Ker} b \to \operatorname{Ker} c \to \operatorname{Ker} d$ は完全である.

(証明) 証明は [2] による. 以下の二つに分けて考える.

$$0 \longrightarrow E \longrightarrow C \longrightarrow D$$

$$\downarrow e \downarrow \qquad c \downarrow \qquad d \downarrow$$

$$0 \longrightarrow E' \longrightarrow C' \longrightarrow D'$$

$$A \longrightarrow B \longrightarrow E \longrightarrow 0$$

$$\downarrow b \downarrow \qquad e \downarrow$$

$$A' \longrightarrow B' \longrightarrow E' \longrightarrow 0$$

$$\downarrow 0$$

ここで

$$E = \operatorname{Ker}(C \to D)$$

$$= \operatorname{Im}(B \to C)$$

$$\cong \operatorname{Coim}(B \to C)$$

$$= \operatorname{Coker}(\operatorname{Ker}(B \to C))$$

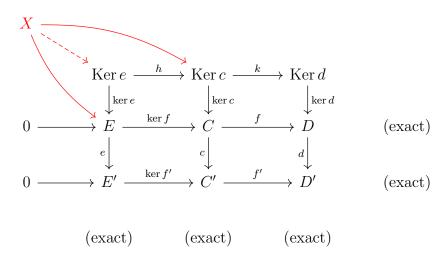
$$= \operatorname{Coker}(\operatorname{Im}(A \to B))$$

$$= \operatorname{Coker}(\operatorname{Ker}(\operatorname{Coker}(A \to B)))$$

$$= \operatorname{Coker}(A \to B)$$

である. E' も同様である.

- (α) 0 \rightarrow Ker $e \rightarrow$ Ker $c \rightarrow$ Ker d は完全である.
- $(\beta) \operatorname{Ker} b \to \operatorname{Ker} e \ \mathsf{lt} \ \mathrm{epi} \ \mathsf{cb} \ \mathsf{5}.$
 - (α) については、以下の可換図式を考える.



h の取り方から, $\operatorname{Ker} e$ は E と $\operatorname{Ker} c$ の交わりになるので, 上図から

$$h = \ker((\ker d) \circ k)$$

である. 従って h は mono となるので, im h = h となることに注意すると, 以下の図を可換にするような射がそれぞれに存在する.



$$\operatorname{Ker} k$$

$$\downarrow \exists ! \qquad \ker k$$

$$\operatorname{Im} h \xrightarrow{h} \operatorname{Ker} c \xrightarrow{(\ker d) \circ k} D$$

以上により $\operatorname{Im} h = \operatorname{Ker} k$ が示される.

 $(\beta.1)$ Coker $b \to \text{Coker } e$ は同型である.

以下の図式に (α) の双対を適用すればよい.

$$\begin{array}{cccc}
A & \longrightarrow & B & \longrightarrow & E & \longrightarrow & 0 \\
\downarrow & \downarrow & & \downarrow & \downarrow & \downarrow \\
A' & \longrightarrow & B' & \longrightarrow & E' & \longrightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & & & & & & & & & & & & \\
\end{array}$$

(β.2) 完全列の可換図式

$$A' \longrightarrow B' \longrightarrow E' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

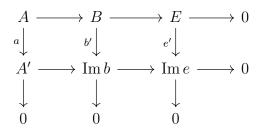
$$0 \longrightarrow \operatorname{Coker} b \longrightarrow \operatorname{Coker} e \longrightarrow 0$$

から完全列 $A' \to \operatorname{Im} b \to \operatorname{Im} e$ を得る. そのためにまず A' を $B' \to E'$ の核で置き換えて (α) を用いて完全列 $0 \to \operatorname{Ker}(B' \to E') \to \operatorname{Im} b \to \operatorname{Im} e$ を得る. そして

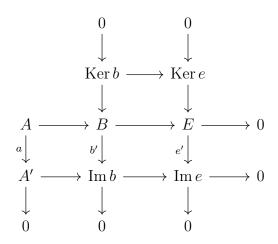
$$A' \to \operatorname{Ker}(B' \to E') = \operatorname{Im}(A' \to B')$$

は epi であるから求める結果となる.

(β.3) 以上により以下の完全列の可換図式を得る.



このとき e' は $\operatorname{Ker} b' \to E$ の余核である.



以上で $\operatorname{Ker} b \to \operatorname{Ker} e$ が epi になることがわかる.

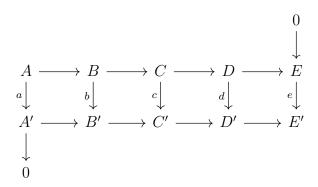
上記の双対として以下の補題を得る.

補題 2.3. 完全列の可換図式

$$\begin{array}{cccc}
 & & & & & & & & & & & \\
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D \\
\downarrow & & & \downarrow & & \downarrow & & \downarrow \\
\downarrow a & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D'
\end{array}$$

から導かれる列 Coker $a \to \operatorname{Coker} b \to \operatorname{Coker} c$ は完全である.

定理 2.1 (蛇の補題). 次の完全列の可換図式



に対して次の列

 ${\rm Ker}\,b\to {\rm Ker}\,c\to {\rm Ker}\,d\stackrel{\partial}{\to} {\rm Coker}\,b\to {\rm Coker}\,c\to {\rm Coker}\,d$ は完全である. 詳しく言うと

- (1) $K = \text{Ker}(C \to D')$ とおくと $K \to \text{Ker } d$ が全射になる.
- (2) $K' = \operatorname{Coker}(B \to C')$ とおくと $\operatorname{Coker} b \to K'$ が単射になる.
- (3) 射の合成

$$K \to C \xrightarrow{c} C' \to K'$$

と射の合成

$$K \to \operatorname{Ker} d \xrightarrow{\partial} \operatorname{Coker} b \to K'$$

とが等しくなるような射

$$\partial \colon \operatorname{Ker} d \to \operatorname{Coker} b$$

がただ一つ存在する.

(4) 上の6項からなる列が完全となる.

(証明) f を射 $C' \to \operatorname{Ker}(D' \to E')$ とする. 完全列の可換図式

に対して補題 2.2 を 2 回用いて完全列

$$B \to K \to \operatorname{Ker} d \to 0$$

を得る. 同様に完全列

$$0 \to \operatorname{Coker} b \to K' \to D'$$

を得る. これで (1), (2), (3) が示された.

(4) については、2.2、2.3 と双対性から

$$\operatorname{Ker} c \to \operatorname{Ker} d \to \operatorname{Coker} b$$

の完全性を示せばよい. そのためには

$$\operatorname{Ker} c \to \operatorname{Ker} d \to K'$$

が完全であればよい. 図式

と 2.2 から結論を得る.

蛇の補題の系として以下の補題を得る.

補題 2.4 (5項補題). 次の完全列の可換図式

$$\begin{array}{cccc}
A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D & \longrightarrow & E \\
\downarrow a & \downarrow \\
A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' & \longrightarrow & E'
\end{array}$$

について

- 1. *a*, *b*, *d* が epi ならば *c* も epi
- 2. *b*, *d*, *e* が mono ならば *c* も mono

が成り立つ.

3 気になっているところ

というわけで、Iversen's exact category(一般化された Abel 圏) で強いバージョンの蛇の補題を示したのですが、まだ自分でも理解できてないところがあります.特に

射の合成

$$K \to C \xrightarrow{c} C' \to K'$$

と射の合成

$$K \to \operatorname{Ker} d \xrightarrow{\partial} \operatorname{Coker} b \to K'$$

とが等しくなるような射

$$\partial \colon \operatorname{Ker} d \to \operatorname{Coker} b$$

がただ一つ存在する.

のところが自力で示せていません (具体的な ∂ の構成が出来ていない). 参考文献も色々当たっていますが、この件について詳細をご存知の方がいらっしゃいましたら、情報をお待ちしております.

参考文献

- [1] 河田敬義. ホモロジー代数. 岩波書店, 1990.
- [2] B. イヴァセン (前田博信訳). 層のコホモロジー. シュプリンガー・フェアラー ク東京, 1997.
- [3] Shi Rong and Pu Zhang. Strong version of snake lemma in exact categories. Homology, Homotopy and Applications, Vol. 23, No. 2, pp. 151–163, 2021.